Illumination pattern optimization for fluorescence tomography
نویسندگان
چکیده
Fluorescence molecular tomography is a powerful tool for 3D visualization of molecular targets and pathways in vivo in small animals. Owing to the high degrees of absorption and scattering of light through tissue, the fluorescence tomographic inverse problem is inherently ill-posed. In order to improve source localization and the conditioning of the light propagation model, multiple sets of data are acquired by illuminating the animal surface with different spatial patterns of near-infrared light. However, the choice of these patterns in most experimental setups is ad hoc and suboptimal. This paper presents a systematic approach for designing efficient illumination patterns for fluorescence tomography. Our objective here is to determine how to optimally illuminate the animal surface so as to maximize the information content in the acquired data. We achieve this by improving the conditioning of the Fisher information matrix. We parameterize the spatial illumination patterns and formulate our problem as a constrained optimization problem that, for a fixed number of illumination patterns, yields the optimal set of patterns. For geometric insight, we used our method to generate a set of three optimal patterns for an optically homogeneous, regular geometrical shape and observed expected symmetries in the result. We also generated a set of six optimal patterns for an optically homogeneous cuboidal phantom set up in the transillumination mode. Finally, we computed optimal illumination patterns for an optically inhomogeneous realistically shaped mouse atlas for different given numbers of patterns. The regularized pseudoinverse matrix, generated using the singular value decomposition, was employed to reconstruct the point spread function for each set of patterns in the presence of a sample fluorescent point source deep inside the mouse atlas. We have evaluated the performance of our method by examining the singular value spectra as well as plots of average spatial 0031-9155/10/102961+22$30.00 © 2010 Institute of Physics and Engineering in Medicine Printed in the UK 2961
منابع مشابه
Virtual source pattern method for fluorescence tomography with structured light
In order to reduce both acquisition and reconstruction times, illumination and detection in fluorescence diffuse optical tomography (FDOT) have recently evolved from a point-based to a pattern-based approach. The use of structured illumination, offering the ability to project any pattern of light onto the object, associated to the compression of the acquired fluorescence images has paved the wa...
متن کاملNon-contact fluorescence optical tomography with scanning patterned illumination.
This article describes a novel non-contact fluorescence optical tomography scheme which utilizes multiple area illumination patterns, to reduce the ill-posedness of the inverse problem involved in recovering interior fluorescence yield distributions in biological tissue from boundary fluorescence measurements. The image reconstruction is posed as an optimization problem which seeks a tissue opt...
متن کاملA virtual source pattern method for fluorescence tomography with structured light.
In order to reduce both acquisition and reconstruction times, illumination and detection in fluorescence diffuse optical tomography (FDOT) have recently evolved from a point-based to a pattern-based approach. The use of structured illumination, offering the ability to project any pattern of light onto the object, associated with the compression of the acquired fluorescence images has paved the ...
متن کاملAdaptive finite element based tomography for fluorescence optical imaging in tissue.
A three-dimensional fluorescence-enhanced optical tomography scheme based upon an adaptive finite element formulation is developed and employed to reconstruct fluorescent targets in turbid media from frequency-domain measurements made in reflectance geometry using area excitation illumination. The algorithm is derived within a Lagrangian framework by treating the photon diffusion model as a con...
متن کاملStudying different illumination patterns for resolution improvement in fluorescence microscopy.
Various types of non-uniform illumination can be used for resolution improvement in fluorescence microscopy. Here we study the differences between several types of incoherent illumination patterns, such as multi-spot, line and pseudo-random patterns. This requires an imaging setup and an image reconstruction algorithm that are flexible enough to incorporate any type of illumination pattern. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010